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The Physical Neutrino Current from a 
Duality Transformation 
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With a magnetic-like interpretation of the axial current, the polarization of 
(massless) neutrinos can be viewed as the result of a constrained duality 
transformation, set up so as to lead to an electromagnetic-like gauge field 
interaction. 

1. I N T R O D U C T I O N  

The apparent  masslessness of  neutrinos does not necessarily require 
them to be polarized (Sakurai, 1973). This paper attempts a simple justi- 
fication of  the polarization property, based on a magnetic-like interpreta- 
tion of  the conserved axial current. The massive Dirac equation is first 
reviewed in Section 2. Then, in Section 3 the massless case is considered. 
The polarization condition is obtained by means of a constrained duality 
transformation. The aforementioned constraint is set up so as to guarantee 
the existence of  an electromagnetic-like gauge field: this is consistent with 
treating the neutrino situation as a limiting case of  the massive one, and 
corresponds to the interaction with a (massless) Z ~ particle (Aitchison, 
1982; Aitchison and Hey, 1989). The ambiguity of  whether the neutrino 
polarization should be left-handed or right-handed remains. 

All the treatment outlined in this paper is done before second quan- 
tization and before any possible symmetry-breaking effects (Aitchison, 
1982; Aitchison and Hey, 1989). In particular, anomalies (Aitchison, 1982; 
Aitchison and Hey, 1989) are not a concern, as they only arise after second 
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quantization. Notat ion is rather standard, with Greek (Latin) indices 
running through the values 0, 1, 2, 3 (1, 2, 3). The summation convention 
is applied to repeated up and down labels, and units are such that 
h = c = l .  

2. DIRAC E Q U A T I O N  

In a frame of reference of  real spacetime coordinates x = {x ~} and 
pseudo-Euclidean metric g,V = diag( + 1, - 1, - 1, - 1), the Dirac equation 
may be written as follows2: 

i7~0~ ~(x)  = mq?(x), m > 0 (1) 

Here, q~ is a complex four-spinor and the Dirac matrices 7 ~ obey the usual 
rules 

7~7 ~ + 7v7 ~ = 2gUVL (7~) * = 7~ ~ (2) 

with I being the 4 x 4 identity matrix. For convenience, we further define 
75 = i7o717273; this is Hermitian and unitary, and anticommutes with all the 
7 u. Also, we remark the alternative spacetime notation: x = {4 s}, with 
t = x ~  s = { x k } .  

The Dirac equation leads to a current 

J (x) = Ce(x) = o, - {0} (3)  

which is conserved, that is, 0 p J '  = 0. Besides, the zeroth component  of  jU/q 
is positive definite. On the other hand, the axial current 

K"(x) = O~(x)TUy'tP(x), 0 e R  - {0} (4) 

is not conserved, except in the limit m -+ 0. Both currents are real, and have 
rather obvious  transformation properties under changes of  coordinates 
x --* x '  (passive transformations). First of  all, J "  and K" behave like vectors 
under transformations of  the proper Poincar~ group. Then, for a spatial 
inversion ( t ' =  t, s ' = - s ) ,  J" is still a vector, while K" behaves like a 
pseudovector. Finally, in the case of  a time inversion ( t ' =  - t ,  s '=  s), J" 
and K u behave, respectively, as a pseudovector and a vector. In fact, the 

2For a review of the Dirac equation and most related topics, see, for instance, Sakurai (1973), 
Messiah (1966), Schweber (1961), Bogoliubov and Shirkov (1959), Bjorken and Drell (1964), 
and Itzykson and Zuber (1980). More specifically about gauge theory see Aitchison (1982) 
and Aitchison and Hey (1989). 
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appropriate time inversion transformation for spinors may be expressed as 3 

W'(x') = (global phase factor)7~ (5) 

A simplification is obtained by expediently requiring q and ~ to be odd 
under time inversion 4 (rather than true scalars, as previously assumed): 
then, J"  is a true vector and K" a true pseudovector under the full Poincar6 
group. This will be the convention adopted in the following, with the ratio 
~/q remaining a true scalar. Henceforth, the symbols q+ and ~+ shall 
indicate the values of q and ~ in frames with t "running forward" [e.g., as 
established by comparison with the macroscopic arrow of time (Kittel, 
1969)]. For the sake of clarity, we note that all the spinor transformations 
here considered are realized as follows: 

�9 '(x') = A~P(x), A* = + 7~ - 1~o (6) 

iv P0 ~ W'(x') = m W'(x') (7) 

where the positive (negative) sign in equation (6) applies to the or- 
thochronous (antiorthochronous) cases. Equations (6) and (7) refer to real 
linear changes of coordinates 

x,~, = 2~,x ~ + b ~, 2~ g~p2vp = guy (Poincar6 group) (8) 

which all have det(2~) = _ 1. A pseudoscalar (pseudovector, pseudoten- 
sor) differs from a scalar (vector, tensor) by the presence of the aforemen- 
tioned Jacobian determinant in the transformation equations. For instance, 
~b'(x') = [det(2~0]q~(x) is a pseudoscalar transformation. 

As in w of Pauli (1981), the conservation of the vector current J~ 
may be taken to imply the existence of  a real antisymmetric tensor F ~'~ such 
that 

Oa Fa~'(x) = J" (x) (9) 

The tensor F u" is not necessarily a physical field. However, since the 
knowledge of J~' gives no information about the divergence of the dual 
�9 Fuv, we can further request 

cgp *FtJU(x) = 0 (10) 

3Time inversion as here introduced is just another passive transformation of coordinates 
(similar to spatial inversion), it is not time reversal! See, for instance, equation (6.35) of 
Bogoliubov and Shirkov (1959); beware of a misprint on the first line (a missing negative 
sign in front of x~ Compare equation (XX.129) of Messiah (1966). 

4More precisely, for any Poincar6 transformation of coordinates, q ' =  [sign(Ot'/dt)]q and 
similarly for ~. For electromagnetic-like quantities, this type of behavior is a legitimate 
convention, albeit not the most common one. See equations (9), (10) and equations (9), (15) 
in the following, and compare w and w of Jackson (1975). 
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claiming, then, that F "v of equations (9) and (10) is "physical". Due to 
equation (11) below, this is in agreement with the principles of gauge 
theories (see footnote 2). The dual *F ~v is a pseudotensor, according to the 
definition *F"V= 1E"~aF~p, where E is the totally antisymmetric (isotropic) 
symbol [equation 11.139 of Jackson (1975)]. As usual, equation (10) is 
readily solved by the introduction of a real vector potential A u (Jackson, 
1975): 

Fur(x)  = ~ A v ( x )  - OvA~,(x) (11) 

The corresponding gauge freedom relates to the following replacement 
(Hermitian operator ~ Hermitian operator) 

iOu ~ iN~ = i~?~ - q+ Au(x ) (12)  

to be performed in equation (1). After the minimal replacement (12), the 
Dirac equation still leads to the conservation of the curreflt (3), and q§ 
plays the role of the coupling constant. The theory remains covariant 

_ _ ) "  / f t [equations (6)-(8)  with iO' u 10~ - q + A u ( x  )] and becomes gauge-invari- 
ant, as in w of Messiah (1966). 

In concluding this section, we find it convenient to define the "time 
index" T of a system of coordinates {t, s} as T = 0 if t runs forward and 
T = 1 otherwise. Then 

q = ( - 1 ) T q + ,  0 = ( - I ) T 0 +  (13) 

Similarly, one may introduce the "space index" S as follows: S = 0 if the 
triplet {x k} is fight-handed (e.g., as established by comparison with a 
human hand), and S = 1 otherwise. 5 For a generic four-spinor | the 
statement 

~ ' O ( x )  = - ( - 1) T + , O ( x )  (14) 

defines it as a left-handed spinor, and does so in a coordinate-invariant 
manner: the factor ( -  1)r+ s extends the validity of the definition to frames 
with T + S = 1, which are often ignored in the literature [compare equa- 
tion (10.127) of Bjorken and Drell (1964), and related remarks]. A state- 
ment analogous to equation (14) can be made for right-handed spinors, 
multiplying by - 1 the right-hand side of the same equation. 

5We recall that one uses the right-hand (left-hand) rule in fight-handed (le•handed) frames 
{xk}. See p. 51 of Klein (1948) and w of Butkov (1968). 
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3. Z E R O  M A S S  

If  one treats the m = 0 situation as a limiting case of equation (1),  
everything remains essentially the same as in the previous section, except 
that K u is now conserved: 0~K p = 0 (see footnote 2). Once more, we can 
introduce a tensor Fuv such that equation (9) is satisfied. Then, taking 
advantage of  the remaining freedom, one is also able to request 

Op *FaU(x) = KU(x) (15) 

This is, possibly, the most economical way of  "utilizing" the two conserved 
currents. Again, Fuv is a mathematical object, and may not be a physical 
field. However, seeking a gauge invariance like that of  Section 2, we insist 
that a physical field Z u~ be found by bringing (15) to the form of equation 
(10) by means of  a duality transformation. 6 (That  is, the gauge principle of  
Section 2 is here turned into a constraint acting on a set of duality-equiva- 
lent problems.) To that end, we write 

ZU~(x) = F ~ ( x )  cos A + *FU~(x) sin A, 
(16) 

*ZUV(x) = -FUr(x )  sin A + *FUr(x) cos A 

JU(x )  = J~(x) cos A + KU(x) sin A, 
(17) 

)flU(x) = - J U ( x )  sin A + KU(x) cos A = 0 

with the parameter A t [ - n ,  re] being pseudoscalar. 7 This gives (with Q = 
q/cos A) 

~z~u(x) = W'(x), ~ *z~u(x) = 0 (18) 

J U(x) = Qq/(x)yUW(x) (19) 

and the equations ~,~'t "u = 0 read 

~(x)7 u[( _ 1 ) r + s L + + I + 7 s] qJ(x) = 0 (20) 

L = - (q tan A)/~ = ( - 1) r+ SL+ + (21) 

where L+ + indicates the value of L in a system of  coordinates with S - -0  
and T = 0. The constraints (20) act as supplementary conditions to the 
massless Dirac equation (see footnote 2) 

~[iOp - Q+ Y~(x)]q2(x) = 0, Q = ( - 1 ) r Q +  (22) 

6For a discussion of the duality transformation and its theoretical significance, see Jackson 
(1975). 

7The massive case [that is, equations (9) and (10)] may be reproduced by means of ~, A ~ 0 
in equations (16) -(18).  
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which is here displayed after the appropriate minimal replacement (Q + 
plays the role of the coupling constant). The symbol Y, denotes the real 
vector potential of  Zu,, and equation (22) still leads to the conservation of 
the currents (3) and (4). 

The formulation now consists of equations (18)-(20) and (22), with 
L+ + and Q + as the new parameters (in place of q and ~), and Z "~ as the 
physical gauge field. In this context, the constraints (20) reduce to 

75W(x) = - ( - 1) r+ SL+ +V(x) (23) 

under the standard assumption that the theory should be linear in the limit 
of  a switched-off interaction (Q + ~ 0). The above eigenvalue equation is 
clearly more restrictive than the original form (20). In particular, the only 
possible values of L+ + in (23) are ___ 1, with the upper (lower) sign 
defining a left-handed (right-handed) spinor. The general solution of (23) 
may be written as (see footnote 2) 

W(x) = 111 -T- ( - 1)r+ sy 51@(x ) (24) 

where �9 is an arbitrary four-spinor. Hence, equation (23) is eliminated by 
means of the replacement: W ~ right-hand side of equation (24). The final 
formulation consists of  (18), (24), and the following: 

J~'(x) = -Q~ ~(x) yu[( _ 1) r i  -T- ( - 1)sy 5]~(x) (25) 

y#[iOp - Q+ Y # ( x ) ] [ ( - 1 ) r I ~  (--1)s75]*(x) = 0 (26) 

4. CONCLUSIONS 

Aside from a sign ambiguity, the outlined procedure justifies the 
well-known polarization of neutrinos. In particular, equation (25) repre- 
sents the correct physical neutrino current (upper sign). 
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